All Issue

2018 Vol.29, Issue 6 Preview Page
December 2018. pp. 268-274
Abstract

In this study we suggest a humidity-sensitive color sensor using a one-dimensional photonic crystal and Hong Kong University of Science and Technology-1 (HKUST-1), which is a metal-organic framework (MOF) substance. One-dimensional photonic crystals have a photonic band gap, due to a periodic refractive-index change, and block and reflect light components in a specific wavelength band. The refractive index of HKUST-1 differs in dry and humid environments. Herein we designed a sensor using the presence of the photonic band gap, with FDTD simulation. As a result of optical analysis, the color conversion of the reflected light was superior to the color conversion of the transmitted light. When the center wavelength of the photonic band gap was 550 nm, the maximum peak value of the wet environment increased by a factor of about 9.5 compared to the dry environment, and the color conversion from achromatic to green was excellent as a sensor. The results of this study suggest the application of MOF materials to moisture sensors, and the nanostructure design of MOF materials will expand the applications to industrial devices.

본 연구에서는 1차원 포토닉 크리스탈과 금속-유기 구조체 (MOF) 물질인 Hong Kong University of Science and Technology (HKUST-1)을 이용한 수분 감지 컬러 센서를 제안한다. 1차원 포토닉 크리스탈은 주기적인 굴절률 변화에 의해 포토닉 밴드갭이 존재하고, 특정한 파장 대역의 광 성분을 차단 및 반사한다. HKUST-1의 굴절률은 건조한 환경과 습한 환경에서 그 값이 서로 다르다. 여기서 우리는 포토닉 밴드갭의 유무를 활용하여 FDTD 시뮬레이션으로 센서를 설계하였다. 광학 해석 결과, 투과된 광의 색 변환보다 반사된 광의 색 변환이 우수하여 반사된 광을 이용하였다. 그리고 포토닉 밴드갭의 중심 파장이 550 nm인 경우, 건조한 환경 대비 습한 환경의 최대 피크 값이 약 9.5배로 증가했으며, 무채색에서 녹색으로 색 변환이 가능하여 센서로의 특성이 우수하였다. 본 연구 결과는 MOF 물질의 수분 감지 컬러 센서로의 활용을 제시하였으며, MOF 물질의 나노 구조 설계로 산업 디바이스로의 활용성도 확대할 것이다.

References
  1. Q. Yan, L. Wang, and X. S. Zhao, "Artificial defect engineering in three-dimensional colloidal photonic crystals," Adv. Funct. Mater. 17, 3695-3706 (2007).10.1002/adfm.200600538
  2. K. Tsakmakidis, "In the limelight," Nat. Mater. 11, 1000-1001 (2012).10.1038/nmat350423175037
  3. S. John, "Why trap light?," Nat. Mater. 11, 997-999 (2012).10.1038/nmat350323175036
  4. Y. Zhao, Z. Xie, H. Gu, C. Zhu, and Z. Gu, "Bio-inspired variable structural color materials," Chem. Soc. Rev. 41, 3297-3317 (2012).10.1039/c2cs15267c22302077
  5. C. Paquet and E. Kumacheva, "Nanostructured polymers for photonics," Mater. Today 11, 48-56 (2008).10.1016/S1369-7021(08)70056-7
  6. E. Tian, J. Wang, Y. Zheng, Y. Song, L. Jiang, and D. Zhu, "Colorful humidity sensitive photonic crystal hydrogel," J. Mater. Chem. 18, 1116-1122 (2008).10.1039/b717368g
  7. I. Pavlichenko, A. T. Exner, M. Guehl, P. Lugli, G. Scarpa, and B. V. Lotsch, "Humidity enhanced thermally tunable TiO2/SiO2 bragg stacks," J. Phys. Chem. C 116, 298-305 (2012).10.1021/jp208733t
  8. S. Colodrero, M. Oca-a, and H. Míguez, "Nanoparticle-based one-dimensional photonic crystals," Langmuir 24, 4430-4434 (2008).10.1021/la703987r18366232
  9. S. Y. Choi, M. Mamak, G. Von Freymann, N. Chopra, and G. A. Ozin, "Mesoporous bragg stack color tunable sensors," Nano Lett. 6, 2456-2461 (2006).10.1021/nl061580m17090073
  10. Y.-J. Lee and P. V. Braun, "Tunable inverse opal hydrogel pH sensors," Adv. Mater. 15, 563-566 (2003).10.1002/adma.200304588
  11. H. S. Lim, J. H. Lee, J. J. Walish, and E. L. Thomas, "Dynamic swelling of tunable full-color block copolymer photonic gels via counterion exchange," ACS Nano 6, 8933-8939 (2012).10.1021/nn302949n23020142
  12. S. Kubo, Z. Z. Gu, K. Takahashi, A. Fujishima, H. Segawa, and O. Sato, "Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure," J. Am. Chem. Soc. 126, 8314-8319 (2004).10.1021/ja049505615225074
  13. C. I. Aguirre, E. Reguera, and A. Stein, "Tunable colors in opals and inverse opal photonic crystals," Adv. Funct. Mater. 20, 2565-2578 (2010).10.1002/adfm.201000143
  14. M. M. Hawkeye and M. J. Brett, "Optimized colorimetric photonic-crystal humidity sensor fabricated using glancing angle deposition," Adv. Funct. Mater. 21, 3652-3658 (2011).10.1002/adfm.201100893
  15. S. R. Batten, N. R. Champness, X.-M. Chen, J. Garcia- Martinez, S. Kitagawa, L. Öhrström, M. O'Keeffe, M. P. Suh, and J. Reedijk, "Terminology of metal-organic frameworks and coordination polymers (IUPAC recommendations 2013)," Pure Appl. Chem. 85, 1715-1724 (2013).10.1351/PAC-REC-12-11-20
  16. L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, and J. T. Hupp, "2-40 metal-organic framework materials as chemical sensors," Chem. Rev. 112, 1105-1125 (2012).10.1021/cr200324t22070233
  17. M. Allendorf, "Stress-induced chemical detection using flexible metal - organic frameworks," J. Am. Chem. Soc. 130, 14404-14405 (2008).10.1021/ja805235k18841964
  18. S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen, and I. D. Williams, "A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n," Science 283, 1148-1150 (1999).10.1126/science.283.5405.114810024237
  19. E. Biemmi, A. Darga, N. Stock, and T. Bein, "Direct growth of Cu3(BTC)2(H2O)3 · xH2O thin films on modified QCM- gold electrodes - Water sorption isotherms," Microporous Mesoporous Mater. 114, 380-386 (2008).10.1016/j.micromeso.2008.01.024
  20. Q. M. Wang, D. Shen, M. Bülow, M. L. Lau, S. Deng, F. R. Fitch, N. O. Lemcoff, and J. Semanscin, "Metallo- organic molecular sieve for gas separation and purification," Microporous Mesoporous Mater. 55, 217-230 (2002).10.1016/S1387-1811(02)00405-5
  21. I. Senkovska and S. Kaskel, "High pressure methane adsorption in the metal-organic frameworks Cu3(btc)2, Zn2(bdc)2dabco, and Cr3F(H2O)2O(bdc)3," Microporous Mesoporous Mater. 112, 108-115 (2008).10.1016/j.micromeso.2007.09.016
  22. J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, "Omnidirectional reflection from a one-dimensional photonic crystal," Opt. Lett. 23, 1573 (1998).10.1364/OL.23.00157318091848
  23. J. M. Bendickson, J. P. Dowling, and M. Scalora, "Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures," Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 53, 4107-4121 (1996).
  24. B. Bowser, L. Brower, M. Ohnsorg, L. Gentry, C. Beaudoin, and M. Anderson, "Comparison of surface-bound and free-standing variations of HKUST-1 MOFs: Effect of activation and ammonia exposure on morphology, crystallinity, and composition," Nanomaterials 8, 650 (2018).10.3390/nano809065030142895PMC6164254
  25. E. Redel, Z. Wang, S. Walheim, J. Liu, H. Gliemann, and C. Wöll, "On the dielectric and optical properties of surface-anchored metal-organic frameworks: A study on epitaxially grown thin films," Appl. Phys. Lett. 103 (2013).10.1063/1.4819836
  26. M. Daimon and A. Masumura, "High-accuracy measurements of the refractive index and its temperature coefficient of calcium fluoride in a wide wavelength range from 138 to 2326 nm," Appl. Opt. 41, 5275-81 (2002).10.1364/AO.41.00527512211554
  27. G. Wyszecki and W. S. Stiles, Color Science 2nd Edition (John Wiley & Sons, New York, 1982), pp. 257.
  28. A. C. Harris and I. L. Weatherall, "Objective evaluation of colour variation in the sandburrowing beetle chaerodes trachyscelides white (Coleoptera: Tenebrionidae) by instrumental determination of CIELAB values," J. R. Soc. New Zeal. 20, 253-259 (1990).10.1080/03036758.1990.10416819
  29. H. S. Fairman, M. H. Brill, and H. Hemmendinger, "How the CIE 1931 color-matching functions were derived from Wright-Guild data," Color Res. Appl. 22, 11-23 (1997).10.1002/(SICI)1520-6378(199702)22:1<11::AID-COL4>3.0.CO;2-7
  30. W. S. Stiles and J. M. Burch, "N.P.L. Colour-matching investigation: Final report (1958)," Opt. Acta Int. J. Opt. 6, 1-26 (1959).10.1080/713826267
Information
  • Publisher :Optical Society of Korea
  • Publisher(Ko) :한국광학회
  • Journal Title :Korean Journal of Optics and Photonics
  • Journal Title(Ko) :한국광학회지
  • Volume : 29
  • No :6
  • Pages :268-274
  • Received Date :2018. 09. 20
  • Accepted Date : 2018. 11. 03