All Issue

2020 Vol.31, Issue 3 Preview Page

Regular Paper


June 2020. pp. 148-154
Abstract


References
1 

R. W. Sabnis, "Color filter technology for liquid crystal displays," Displays 20, 119-129 (1999).

10.1016/S0141-9382(99)00013-X
2 

H. S. Lee, Y. T. Yoon, S. S. Lee, S. H. Kim, and K. D. Lee, "Color filter based on a subwavelength patterned metal grating," Opt. Express 15, 15457-15463 (2007).

10.1364/OE.15.01545719550831
3 

S. Yokogawa, S. P. Burgos, and H. A. Atwater, "Plasmonic color filters for CMOS image sensor applications," Nano Lett. 12, 4349-4354 (2012).

10.1021/nl302110z22799751
4 

B. Zeng, Y. Gao, and F. J. Bartoli, "Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters," Sci. Rep. 3, 2840 (2013).

10.1038/srep0284024100869PMC3792416
5 

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength Optics," Nature 424, 824-830 (2003).

10.1038/nature0193712917696
6 

K. A. Willets and R. P. V. Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Annu. Rev. Phys. Chem. 58, 267-297 (2007).

10.1146/annurev.physchem.58.032806.10460717067281
7 

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).

10.1038/35570
8 

F. V. Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. V. Exter, "Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission," Nature 492, 411-414 (2012).

10.1038/nature1166923257884
9 

H. Liu and P. Lalanne, "Microscopic theory of the extraordinary optical transmission," Nature 452, 728-731 (2008).

10.1038/nature0676218401405
10 

H. Liu and P. Lalanne, "Comprehensive microscopic model of the extraordinary optical transmission," J. Opt. Soc. Am. A 27, 2542-2550 (2010).

10.1364/JOSAA.27.00254221119737
11 

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, "Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging," Nat. Commun. 1, 59 (2010).

10.1038/ncomms105820975716
12 

C. S. Park, V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, "Omnidirectional color filters capitalizing on a nano-resonator of Ag-TiO2-Ag integrated with a phase compensating dielectric overlay," Sci. Rep. 5, 8467 (2015).

10.1038/srep0846725683162PMC4329542
13 

Y. S. Do, "A highly reproducible fabrication process for large-area plasmonic filters for optical applications," IEEE Access 6, 68961-68967 (2018).

10.1109/ACCESS.2018.2880456
14 

Y. G. Moon, Y. S. Do, M. H. Lee, B. Y. Hwang, D. J. Jeong, B.-K. Ju, and K. C. Choi, "Plasmonic chromatic electrode with low resistivity," Sci. Rep. 7, 15206 (2017).

10.1038/s41598-017-15465-829123169PMC5680321
15 

Y. S. Do and K. C. Choi, "Poly-periodic hole arrays for angle-invariant plasmonic filters," Opt. Lett. 40, 3873-3876 (2015).

10.1364/OL.40.00387326274682
16 

S. Chang, Y. S. Do, J.-W. Kim, B. Y. Hwang, J. Choi, B.-H. Choi, Y.-H. Lee, K. C. Choi, and B.-K. Ju, "Photo-insensitive amorphous oxide thin-film transistor integrated with a plasmonic filter for transparent electronics," Adv. Funct. Mater. 24, 3482-3487 (2014).

10.1002/adfm.201304114
17 

Y. S. Do and K. C. Choi, "Quantitative analysis of enhancing extraordinary optical transmission affected by dielectric environment," J. Opt. 16, 065005 (2014).

10.1088/2040-8978/16/6/065005
18 

Y. H. Lee and Y. S. Do, "Optimal design method for a plasmonic color filter by using individual phenomenon in a plasmonic hybrid structure," Korean J. Opt. Photon. 29, 275-284 (2018).

19 

Y. S. Do, J. H. Park, B. Y. Hwang, S.-M. Lee, B.-K. Ju, and K. C. Choi, "Plasmonic color filter and its fabrication for large-area applications," Adv. Opt. Mater. 1, 133-138 (2013).

10.1002/adom.201200021
20 

A. K. Azad and W. Zhang, "Resonant terahertz transmission in subwavelength metallic hole arrays of sub-skin-depth thickness," Opt. Lett. 30, 2945-2947 (2005).

10.1364/OL.30.00294516279477
21 

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779 (1998).

10.1103/PhysRevB.58.6779
22 

F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Léon-Pérez, J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, "Efficiency and finite size effects in enhanced transmission through subwavelength apertures," Opt. Express 16, 9571-9579 (2008).

10.1364/OE.16.00957118575524
23 

S.-H. Chang, S. K. Gray, and G. C. Schatz, "Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films," Opt. Express 13, 3150-3165 (2005).

10.1364/OPEX.13.00315019495214
24 

B. Luk'yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials," Nat. Mater. 9, 707-715 (2010).

10.1038/nmat281020733610
Information
  • Publisher :Optical Society of Korea
  • Publisher(Ko) :한국광학회
  • Journal Title :Korean Journal of Optics and Photonics
  • Journal Title(Ko) :한국광학회지
  • Volume : 31
  • No :3
  • Pages :148-154
  • Received Date :2020. 02. 11
  • Revised Date :2020. 03. 12
  • Accepted Date : 2020. 03. 24