All Issue

2018 Vol.29, Issue 6 Preview Page
December 2018. pp. 241-246
Abstract

In this paper, a low-cost optical temperature sensor is implemented, using a fiber Bragg grating (FBG) as the temperature probe and a low-cost VCSEL with temperature-dependent output wavelength as the light source. To analyze the wavelength of the reflected light from the FBG, an interrogation was applied using a method of referring to the internal temperature according to the output wavelength of the VCSEL. When the temperature of the VCSEL was adjusted from 14 to 52.2°C, the output wavelength varied from 1519.90 to 1524.25 nm. The degree of wavelength tuning according to temperature was 0.114 nm/°C. The variable wavelength repeatability error according to temperature was ±0.003 nm, and the temperature measurement error was ±0.18°C. As a result of measuring the temperatures from 22.3 to 194.2°C, the value of the internal temperature change of the light source according to the applied temperature ΔΤ was 0.146°C/ΔΤ, the change in reflected wavelength of the temperature probe according to applied temperature ΔΤ was measured at 16.64 pm/°C. and the temperature measurement error of the sensor was ±1°C.

본 논문에서는 광섬유 브래그 격자(FBG)를 이용한 광온도센서를 제작하였으며 광원은 출력 파장의 온도 의존성을 가지는 저가형 VCSEL이 사용되며 FBG에서 반사되는 빛의 파장을 분석하는 interrogator는 VCSEL에서 변화되는 출력 파장을 VCSEL의 내부 온도로 확인하는 방법을 적용하여 저가격의 광온도센서를 구현하였다. VCSEL의 내부온도를 52.2°C에서 14°C까지 조절하면서 출력 파장을 1519.90 nm에서 1524.25 nm까지 총 4.35 nm 파장을 변화시켰으며 온도 조절에 따른 파장 변화 반복도 오차는 ±0.003 nm이며 온도 측정 오차는 ±0.18°C로 측정되었다. 광온도센서를 사용하여 22.3~194.2°C의 온도를 측정한 결과 인가한 온도 ΔT에 따른 광원 내부 온도 변화 값은 0.146°C/ΔT이고 인가한 온도 ΔT에 따른 온도 프로브 반사 파장 변화 값(ΔλβT/ΔT)은 16.64 pm/°C로 측정되었으며 센서의 측정 오차는 ±1°C로 나타났다. VCSEL의 출력 파장은 온도에 의존성을 가지고 있어 좁은 범위의 출력 파장을 변화시키기 위한 광원으로 사용하기에 매우 적합하다.

References
  1. W. H. Bartley, "Analysis of transformer failures," in Proc. International Association of Engineering Insurers 36th Annual Conference (2003).
  2. H.-J. Park and M. Song, "Linear FBG temperature sensor interrogation with Fabry-Perot ITU multi-wavelength reference," Sensors 8, 6769-6776 (2008).10.3390/s810676927873898PMC3707479
  3. A. D. Kersey and T. A. Berkoff, "Fiber-optic Bragg grating differential-temperature sensor," IEEE Photon. Lett. 4, 1183- 1185 (1992).10.1109/68.163773
  4. Y.-J. Rao, "In-fibre Bragg grating sensors," Meas. Sci. Technol. 8, 355-375 (1997).10.1088/0957-0233/8/4/002
  5. Y. Zhan, H. Cai, R. Qu, S. Xiang, Z. Fang, and X. Wang, "Fiber Bragg grating temperature sensor for multiplexed measurement with high resolution," Opt. Eng. 43, 2358-2361 (2004).10.1117/1.1786938
  6. C.-L. Zhao, M. S. Demokan, W. Jin, and L. Xiao, "A cheap and practical FBG temperature sensor utilizing a long-period grating in a photonic crystal fiber," Opt. Commun. 276, 242-245 (2007).10.1016/j.optcom.2007.04.037
  7. N. Hirayama and Y. Sano, "Fiber Bragg grating temperature sensor for practical use," ISA Trans. 39, 169-173 (2000).10.1016/S0019-0578(00)00012-4
  8. L. S. Yan, A. Yi, W. Pan, and B, Luo, "A simple demodulation method for FBG temperature sensors using a narrow band wavelength tunable DFB Laser," IEEE Photon. Lett. 22, 1391-1393 (2010).10.1109/LPT.2010.2060478
  9. M. Kondow, T. Kitatani, K. Nakahara, and T. Tanaka, "Temperature dependence of lasing wavelength in a GaInNAs laser diode," IEEE Photon. Lett. 12, 777-779 (2000).10.1109/68.853497
  10. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightw. Technol. 13, 1442-1463 (1997).10.1109/50.618377
Information
  • Publisher :Optical Society of Korea
  • Publisher(Ko) :한국광학회
  • Journal Title :Korean Journal of Optics and Photonics
  • Journal Title(Ko) :한국광학회지
  • Volume : 29
  • No :6
  • Pages :241-246
  • Received Date :2018. 09. 29
  • Accepted Date : 2018. 10. 11