All Issue

2018 Vol.29, Issue 6 Preview Page
December 2018. pp. 275-284
Abstract

In this study we propose a hybrid color-filter design method in which a nanohole array and a nanodisk array are separated by nanopillars of the material AZ 1500. We propose a design method for an RGB color filter, using the tendency of transmitted light according to each design variable. Especially we analyzed the intensity distribution of the electric field in the cross section, and set the height of the nanopillars so that the local surface-plasmon resonances generated in the two different arrays do not affect each other. The optical characteristics of the optimized color filter are as follows: In the case of the red filter, the ratio of the wavelength band expressing red in the visible broadband is 55.01%, and the maximum transmittance is 41.53%. In the case of the green filter, the ratio of the wavelength band expressing green is 40.20%, and the maximum transmittance is 42.41%. In the case of the blue filter, the ratio of the wavelength band expressing blue is 32.78%, and the maximum transmittance is 30.27%. We expect to improve the characteristics of color filters integrated in industrial devices by this study.

본 연구에서는 나노 홀 배열과 나노 디스크 배열이 AZ 1500 나노 기둥에 의해 분리된 하이브리드 구조의 컬러 필터 설계방법을 제시한다. 우리는 각 설계 변수에 따른 투과광 특성 변화의 경향성을 이용하여 RGB 컬러 필터 설계 방법을 제시한다. 특히, 단면에서의 전기장의 세기 분포를 분석하여 두 배열에서 각각 발생하는 국소 표면 플라즈몬 공명이 서로에게 영향을 주지 않도록 AZ 1500 나노 기둥의 높이를 설정하였다. 최적화된 컬러 필터의 투과광 특성은 다음과 같다. Red 컬러 필터의 투과광 특성은 가시광 대역에서 Red를 표현하는 파장대역이 차지하는 비율이 55.01%, 투과도 최댓값이 41.53%이다. 그리고 Green컬러 필터의 경우, Green을 표현하는 파장대역의 비율이 40.20%, 투과도 최댓값은 42.41%이다. Blue 컬러 필터의 경우, Blue를 표현하는 파장대역의 비율이 32.78%, 투과도 최댓값은 30.27%이다. 본 연구를 통해 산업용 장치에 집적되는 컬러 필터의 특성 향상을 이끌어낼 수 있을 것으로 예상한다.

References
  1. F. I. Baida and D. Van Labeke, "Light transmission by subwavelength annular aperture arrays in metallic films," Opt. Commun. 209, 17-22 (2002).10.1016/S0030-4018(02)01690-5
  2. U. Schröter and D. Heitmann, "Surface-plasmon-enhanced transmission through metallic gratings," Phys. Rev. B: Condens. Matter Mater. Phys. 58, 15419-15421 (1998).10.1103/PhysRevB.58.15419
  3. A. Ono, J. I. Kato, and S. Kawata, "Subwavelength optical imaging through a metallic nanorod array," Phys. Rev. Lett. 95, 1-4 (2005).10.1103/PhysRevLett.95.26740716486407
  4. F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B: Condens. Matter Mater. Phys. 74, 1-7 (2006).10.1103/PhysRevB.74.205419
  5. C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).10.1038/nature0535017203054
  6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 86, 1114-7 (1998).10.1038/35570
  7. M. S. Lee and C. Huh, "Display device," U.S. Patent 753194B2 (2017).
  8. K. A. Willets and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Annu. Rev. Phys. Chem. 58, 267-297 (2007).10.1146/annurev.physchem.58.032806.10460717067281
  9. S. Yokogawa, S. P. Burgos, and H. A. Atwater, "Plasmonic color filters for CMOS image sensor applications," Nano Lett. 12, 4349-4354 (2012).10.1021/nl302110z22799751
  10. A. Mahanipour and A. Mokhtari, "Optimization of plas monic color filters for CMOS image sensors by genetic algorithm," in Proc. 2nd Conference on Swarm Intelligence and Evolutionary Computation (Shahid Bahonar Univ., Iran, Mar. 2017), pp. 12-15.
  11. R. W. Sabnis, "Color filter technology for liquid crystal displays," Displays 20, 119-129 (1999).10.1016/S0141-9382(99)00013-X
  12. T. F. Villesen, C. Uhrenfeldt, B. Johansen, and A. Nylandsted Larsen, "Self-assembled Al nanoparticles on Si and fused silica, and their application for Si solar cells," Nanotechnology 24 (2013).10.1088/0957-4484/24/27/275606
  13. H. Ghaemi, T. Thio, D. Grupp, and T. Ebbesen, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B: Condens. Matter Mater. Phys. 58, 6779-6782 (1998).10.1103/PhysRevB.58.6779
  14. G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, and P. Fumagalli, "Optical and magnetic properties of hexagonal arrays of subwavelength," Nano Lett. 9, 1-6 (2009).10.1021/nl801811t19072720
  15. V. R. Shrestha, S.-S. Lee, E.-S. Kim, and D.-Y. Choi, "Aluminum plasmonics based highly transmissive polarization- independent subtractive color filters exploiting a nanopatch array," Nano Lett. 14, 6672-6678 (2014).10.1021/nl503353z25347210
  16. S. Xiao and N. A. Mortensen, "Surface-plasmon-polariton- induced suppressed transmission through ultrathin metal disk arrays," Opt. Lett. 36, p. 37 (2011).10.1364/OL.36.00003721209679
  17. B. Kang, J. Noh, J. Lee, and M. Yang, "Heterodyne interference lithography for one-step micro/nano multiscale structuring," Appl. Phys. Lett. 103, 1-6 (2013).10.1063/1.4841435
  18. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).10.1038/nature0193712917696
  19. J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590-2593 (1999).10.1103/PhysRevLett.82.2590
Information
  • Publisher :Optical Society of Korea
  • Publisher(Ko) :한국광학회
  • Journal Title :Korean Journal of Optics and Photonics
  • Journal Title(Ko) :한국광학회지
  • Volume : 29
  • No :6
  • Pages :275-284
  • Received Date :2018. 10. 08
  • Accepted Date : 2018. 11. 07