All Issue

2020 Vol.31, Issue 1 Preview Page

Regular Paper


February 2020. pp. 37-44
Abstract


References
1 

M. Wolf, "A new look at silicon solar cell performance," Energy Convers. 11, 63-73 (1971).

10.1016/0013-7480(71)90074-X
2 

P. V. Kamat, "Meeting the clean energy demand: Nanostructure architectures for solar energy conversion," J. Phys. Chem. C 7, 2834-2860 (2007).

10.1021/jp066952u
3 

J. M. Gineste, G. Flamant, and G. Olalde, "Incident solar radiation data at Odeillo solar furnaces," J. Phys. IV France 9, Pr3-623-Pr3-627 (1999).

10.1051/jp4:1999399
4 

A. V. D. Rosa, Fundamentals of Renewable Energy Processes, 2nd ed, (Academic Press, Boston, USA, 2009), pp. 591-682.

5 

M. Grundmann, The physics of semiconductors: An introduction including devices and nanophysics, 2nd ed. (Springer, Berlin, Germany, 2006), pp. 473-521.

6 

NREL, Best Research-Cell Efficiency Chart (National Renewable Energy Laboratory, 2019), https://www.nrel.gov/pv/cell- efficiency.html.

7 

H. Hoppe and N. S. Sariciftci, "Organic solar cells: An overview," J. Mater. Res. 19, 1924-1945 (2004).

10.1557/JMR.2004.0252
8 

R. Schroeder and B. Ullrich, "Photovoltaic hybrid device with broad tunable spectral response achieved by organic/ inorganic thin-film heteropairing," Appl. Phys. Lett. 81, 556-558 (2002).

10.1063/1.1494117
9 

C. H. Lee, G. Yu, D. Moses, and A. J. Heeger, "Picosecond transient photoconductivity in poly (p-phenylenevinylene)," Phys. Rev. B 49, 2396-2407 (1994).

10.1103/PhysRevB.49.239610011073
10 

G. Wei, S. Wang, K. Sun, M. E. Thompson, and S. R. Forrest, "Solvent-annealed crystalline squaraine: PC70BM (1:6) solar cells," Adv. Energy Mater. 1, 184-187 (2011).

10.1002/aenm.201100045
11 

C. W. Tang, "Two-layer organic photovoltaic cell," Appl. Phys. Lett. 48, 183-185 (1986).

10.1063/1.96937
12 

N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, "Photoinduced electron transfer from a conducting polymer to buckminsterfullerene," Science 258, 1474-1476 (1992).

10.1126/science.258.5087.147417755110
13 

S. Badgujar, C. E. Song, S. Oh, W. S. Shin, S.-J. Moon, J.-C. Lee, I. H. Jung, and S. K. Lee,, "Highly efficient and thermally stable fullerene-free organic solar cells based on a small molecule donor and acceptor," J. Mater. Chem. A 4, 16335-16340 (2016).

10.1039/C6TA06367E
14 

W. Zhao, S. Li, S. Zhang, X. Liu, and J. Hou, "Ternary polymer solar cells based on two acceptors and one donor for achieving 12.2% efficiency," Adv. Mater. 29, 1604059 (2017).

10.1002/adma.20160405927813280
15 

J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, "A polymer tandem solar cell with 10.6% power conversion efficiency," Nat. Commun. 4, 1446 (2013).

10.1038/ncomms241123385590PMC3660643
16 

S. Nam, J. Seo, S. Woo, W. H. Kim, H. Kim, D. D. C. Bradley, and Y. Kim, "Inverted polymer fullerene solar cells exceeding 10% efficiency with poly (2-ethyl-2-oxazoline) nanodots on electron-collecting buffer layers," Nat. Commun. 6, 8929 (2015).

10.1038/ncomms992926656447PMC4682173
17 

M. A. Green, "The path to 25% silicon solar cell efficiency: History of silicon cell evolution," Prog. Photovoltaics 17, 183-189 (2009).

10.1002/pip.892
18 

C. Park, J. Cho, Y. Lee, J. Park, M. Ju, Y.-J. Lee, and J. Yi, "Technology trends and prospects of silicon solar cells," Curr. Photovoltaics Res. 1, 11-16 (2013).

19 

J. Zhao, A. Wang, and M. A. Green, "24.5% efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates," Prog. Photovoltaics 7, 471-474 (1999).

10.1002/(SICI)1099-159X(199911/12)7:6<471::AID-PIP298>3.0.CO;2-7
20 

K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, "Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell," IEEE J. Photovoltaics 4, 1433-1435 (2014).

10.1109/JPHOTOV.2014.2352151
21 

M.-S. Kim, M-.G. Kang, L. J. Guo, and J. Kim, "Choice of electrode geometry for accurate measurement of organic photovoltaic cell performance," Appl. Phys. Lett. 92, 133301 (2008).

10.1063/1.2895058
22 

M. Li, H. Ma, H. Liu, D. Wu, H. Niu, and W. Cai, "Effect of electrode geometry on photovoltaic performance of polymer solar cells," J. Phys. D: Appl. Phys. 47, 435104 (2014).

10.1088/0022-3727/47/43/435104
23 

E. D. Palik, "Optical parameters for the materials in HOC I, HOC II, and HOC III," in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press, Orlando, USA, 1997), Vol. 3, pp. 187-227.

10.1016/B978-012544415-6.50103-5
24 

H.-J. Hagemann, W. Gudat, and C. Kunz, "Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3," J. Opt. Soc. Am. 65, 742-744 (1975).

10.1364/JOSA.65.000742
25 

J. G. Fossum and E. L. Burgess, "High-efficiency p+-n-n+ back-surface-field silicon solar cells," Appl. Phys. Lett. 33, 238 (1978).

10.1063/1.90311
26 

M. Becker, U. Gösele, A. Hofmann, and S. Christiansen, "Highly p-doped regions in silicon solar cells quantitatively analyzed by small angle beveling and micro-Raman spectroscopy," J. Appl. Phys. 106, 074515 (2009).

10.1063/1.3236571
Information
  • Publisher :Optical Society of Korea
  • Publisher(Ko) :한국광학회
  • Journal Title :Korean Journal of Optics and Photonics
  • Journal Title(Ko) :한국광학회지
  • Volume : 31
  • No :1
  • Pages :37-44
  • Received Date :2019. 11. 19
  • Revised Date :2020. 01. 07
  • Accepted Date : 2020. 01. 07