All Issue

2020 Vol.31, Issue 3

Regular Paper


June 2020. pp. 125-133
Abstract


References
1 

E. E. Hueske, Firearms and Fingerprints (Essentials of Forensic Science Series 5), Suzanne Bell, ed. (Facts and File, NY, USA, 2008).

2 

N. E. Archer, Y. Charles, J. A. Elliott, and S. Jickells, "Changes in the lipid composition of latent fingerprint residue with time after deposition on a surface," Forensic Sci. Int. 154, 224-239 (2005).

10.1016/j.forsciint.2004.09.12016182971
3 

R. S. Croxton, M. G. Baron, D. Butler, T. Kent, and V. G. Sears, "Variation in amino acid and lipid composition of latent fingerprints," Forensic Sci. Int. 199, 93-102 (2010).

10.1016/j.forsciint.2010.03.01920413233
4 

J. S. Day, H. G. M. Edwards, S. A. Dobrowski, and A. M. Voice, "The detection of drugs of abuse in fingerprints using Raman spectroscopy I: latent fingerprints," Spectrochim. Acta, Part A 60, 563-568 (2004).

10.1016/S1386-1425(03)00263-4
5 

K. M. Antoine, S. Mortazavi, A. D. Miller, and L. M. Miller, "Chemical differences are observed in children's versus adults' latent fingerprints as a function of time," J. Forensic Sci. 55, 513-518 (2010).

10.1111/j.1556-4029.2009.01262.x20070471
6 

C. Weyermann, C. Roux, and C. Champod, "Initial results on the composition of fingerprints and its evolution as a function of time by GC/MS analysis," J. Forensic Sci. 56, 102-108 (2011).

10.1111/j.1556-4029.2010.01523.x20707835
7 

Q. Zhao and A. K. Jain, "Model based separation of overlapping latent fingerprints," IEEE Trans. Inf. Forensics Security 7, 904-918 (2012).

10.1109/TIFS.2012.2187281
8 

M. Schott, R. Merkel, and J. Dittmann, "Sequence detection of overlapping latent fingerprints using a short-term aging feature," in Proc. IEEE International Workshop on Information Forensics and Security (WIFS) (Tenerife, Spain, Dec. 2012), pp. 85-90.

10.1109/WIFS.2012.6412630
9 

J. Feng, Y. Shi, and J. Zhou, "Robust and efficient algorithms for separating latent overlapped fingerprints," IEEE Trans. Inf. Forensics Security 7, 1498-1510 (2012).

10.1109/TIFS.2012.2204254
10 

A. Nakamura, H. Okuda, T. Nagaoka, N. Akiba, K. Kurosawa, K. Kuroki, F. Ichikawa, A. Torao, and T. Sota, "Portable hyperspectral imager with continuous wave green laser for identification and detection of untreated latent fingerprints on walls," Forensic Sci. Int. 254, 100-105 (2015).

10.1016/j.forsciint.2015.06.03126207675
11 

R. Bradshaw, W. Rao, R. Wolstenholme, M. R. Clench, S. Bleay, and S. Francese, "Separation of overlapping fingermarks by matrix assisted laser desorption ionisation mass spectrometry imaging," Forensic Sci. Int. 222, 318-326 (2012).

10.1016/j.forsciint.2012.07.00922889915
12 

H.-W. Tang, W. Lu, C.-M. Che, and K.-M. Ng, "Gold nanoparticles and imaging mass spectrometry: Double imaging of latent fingerprints," Anal. Chem. 82, 1589-1593 (2010).

10.1021/ac902607720128591
13 

S. H. Lee, H. Do, and J. J. Yoh, "Simultaneous optical ignition and spectroscopy of a two-phase spray flame," Combust. Flame 165, 334-345 (2016).

10.1016/j.combustflame.2015.12.016
14 

J.-J. Choi, S.-J. Choi, and J. J. Yoh, "Standoff detection of geological samples of metal, rock, and soil at low pressures using laser-induced breakdown spectroscopy," Appl. Spectrosc. 70, 1411-1419 (2016).

10.1177/000370281666485827566256
15 

K.-J. Lee, S.-J. Choi, and J. J. Yoh, "Stand-off laser-induced breakdown spectroscopy of aluminum and geochemical reference materials at pressure below 1 torr," Spectrochim. Acta, Part B 101, 335-341 (2014).

10.1016/j.sab.2014.06.009
16 

J.-H. Yang, S.-J. Choi, and J. J. Yoh, "Towards reconstruction of overlapping fingerprints using plasma spectroscopy," Spectrochim. Acta, Part B 134, 25-32 (2017).

10.1016/j.sab.2017.06.001
17 

M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, "Detection and mapping of latent fingerprints by laser-induced breakdown spectroscopy," Appl. Spectrosc. 60, 1322-1327 (2006).

10.1366/00037020677899908517132451
18 

Y. Godwal, M. T. Taschuk, S. L. Lui, Y. Y. Tsui, and R. Fedosejevs, "Development of laser-induced breakdown spectroscopy for microanalysis applications," Laser Part. Beams 26, 95-104 (2008).

10.1017/S0263034608000128
19 

M. Abdelhamid, F. J. Fortes, M. A. Harith, and J. J. Laserna, "Analysis of explosive residues in human fingerprints using optical catapulting-laser-induced breakdown spectroscopy," J. Anal. At. Spectrom. 26, 1445-1450 (2011).

10.1039/c0ja00188k
20 

M. Abdelhamid, F. J. Fortes, J. J. Laserna, and M. A. Harith, "Optical catapulting laser induced breakdown spectroscopy (OC-LIBS) and conventional LIBS: a comparative study," AIP Conf. Proc. 1380, 55-59 (2011).

10.1063/1.3631810
21 

J. Feng, Z. Wang, L. West, Z. Li, and W. Ni, "A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy," Anal. Bioanal. Chem. 400, 3261-3271 (2011).

10.1007/s00216-011-4865-y21416399
22 

A. D. S. Augusto, É. F. Batista, and E. R. P. Filho, "Direct chemical inspection of eye shadow and lipstick solid samples using laser-induced breakdown spectroscopy (LIBS) and chemometrics: proposition of classification models," Anal. Methods 8, 5851-5860 (2016).

10.1039/C6AY01138A
23 

M. J. C. Pontes, J. Cortez, R. K. H. Galvão, C. Pasquini, M. C. U. Araújo, R. M. Coelho, M. K. Chiba, M. F. de Abreu, and B. E. Madari, "Classification of Brazilian soils by using LIBS and variable selection in the wavelet domain," Anal. Chim. Acta 642, 12-18 (2009).

10.1016/j.aca.2009.03.00119427454
24 

T. Zhang, L. Liang, K. Wang, H. Tang, X. Yang, Y. Duan, and H. Li, "A novel approach for the quantitative analysis of multiple elements in steel based on laser-induced breakdown spectroscopy (LIBS) and random forest regression (RFR)," J. Anal. At. Spectrom. 29, 2323-2329 (2014).

10.1039/C4JA00217B
25 

S. Awasthi, R. Kumar, G. K. Rai, and A. K. Rai, "Study of archaeological coins of different dynasties using libs coupled with multivariate analysis," Opt. Lasers Eng. 79, 29-38 (2016).

10.1016/j.optlaseng.2015.11.005
26 

S. Moncayo, M. Kociánová, J. Hulík, J. Plavčan, M. Horňáčková, M. Suchoňová, P. Veis, and J. O. Cáceres, "Discrimination of copper alloys with archaeological interest using LIBS and chemometric methods," in Proc. The 23rd Annual Conference of Doctoral Students - WDS 2014 (Prague, Česká republika, Jun. 2014), pp. 131-135.

27 

B. G. Oztoprak, M. A. Sinmaz, and F. Tülek, "Composition analysis of medieval ceramics by laser-induced breakdown spectroscopy (LIBS)," Appl. Phys. A 122, 557 (2016).

10.1007/s00339-016-0085-9
28 

S. Wold, K. Esbensen, and P. Geladi, "Principal component analysis," Chemom. Intell. Lab. Syst. 2, 37-52 (1987).

10.1016/0169-7439(87)80084-9
29 

G. R. Flaten, B. Grung, and O. M. Kvalheim, "A method for validation of reference sets in SIMCA modelling," Chemom. Intell. Lab. Syst. 72, 101-109 (2004).

10.1016/j.chemolab.2004.03.003
30 

R. G. Brereton and G. R. Lloyd, "Partial least squares discriminant analysis: taking the magic away," J. Chemom. 28, 213-225 (2014).

10.1002/cem.2609
31 

N. C. Dingari, I. Barman, A. K. Myakalwar, S. P. Tewari, and M. K. Gundawar, "Incorporation of support vector machines in the LIBS toolbox for sensitive and robust classification amidst unexpected sample and system variability," Anal. Chem. 84, 2686-2694 (2012).

10.1021/ac202755e22292496PMC3310257
32 

P. L. Smith, C. Heise, J. R. Esmond, and R. L. Kuruczs, Atomic spectral line database (Harvard-Smithsonian Center for Astrophysics, 2016), http://cfa-www.harvard.edu/amp/data/kur23/sekur.html (Accessed: March 2020).

Information
  • Publisher :Optical Society of Korea
  • Publisher(Ko) :한국광학회
  • Journal Title :Korean Journal of Optics and Photonics
  • Journal Title(Ko) :한국광학회지
  • Volume : 31
  • No :3
  • Pages :125-133
  • Received Date :2020. 02. 21
  • Revised Date :2020. 03. 18
  • Accepted Date : 2020. 03. 25