All Issue

2020 Vol.31, Issue 4

Regular Paper


August 2020. pp. 169-175
Abstract


References
1 

T. Y. Fan, "Laser beam combining for high-power, high-radiance sources," IEEE J. Sel. Top. Quantum Electron. 11, 567-577 (2005).

10.1109/JSTQE.2005.850241
2 

C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, T. Peschel, F. Brückner, T. Clausnitzer, J. Limpert, R. Eberhardt, A. Tünnermann, M. Gowin, E. tan Have, K. Ludewigt, and M. Jung, "2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers," Opt. Express 17, 1178-1183 (2009).

10.1364/OE.17.00117819188944
3 

T. H. Loftus, A. M. Thomas, P. R. Hofman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, "Spectrally beam-combined fiber lasers for high-average-power applications," IEEE J. Quantum Electron. 13, 487-497 (2007).

10.1109/JSTQE.2007.896568
4 

M. Jeon, Y. Jung, J. Park, H. Jeong, J. W. Kim, and H. Seo, "High-power quasi-continuous wave operation of incoherently combined Yb-doped fiber lasers," Curr. Opt. Photon. 1, 525-528 (2017).

5 

M. Strecker, M. Plötner, F. Stutzki, T. Walbaum, S. Ehrhardt, T. Benkenstein, U. Zeitner, T. Schreiber, R. Eberhardt, A. Tünnermann, U. Stuhr, M. Jung, and K. Ludewigt, "Highly efficient dual-grating 3-channel spectral beam combining of narrow-linewidth monolithic cw Yb-doped fiber amplifiers up to 5.5 kW," Proc. SPIE 10897, 108970E (2019).

10.1117/12.2508674
6 

Y. Zheng, Y. Yang, J. Wang, M. Hu, G. Liu, X. Zhao, X. Chen, K. Liu, C. Zhao, B. He, and J. Zhao, "10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation," Opt. Express 24, 12063-12071 (2016).

10.1364/OE.24.01206327410127
7 

L. Li, Q. Liu, J. Chena, L. Wang, Y. Jin, Y. Yang, and J. Shao, "Polarization-independent broadband dielectric bilayer gratings for spectral beam combining system," Opt. Commun. 385, 97-103 (2017).

10.1016/j.optcom.2016.10.048
8 

J. Chen, Y. Zhang, Y. Wang, F. Kong, H. Huang, Y. Wang, Y. Jin, P. Chen, J. Xu, and J. Shao, "Polarization-independent broadband beam combining gratings with over 98% measured diffraction efficiency from 1023 to 1080 nm," Opt. Lett. 42, 4016-4019 (2017).

10.1364/OL.42.00401628957186
9 

J. Chen, Y. Jin, and J. Shao, "Design of broadband polarization-independent multilayer dielectric grating," Proc. SPIE 10339, 1033911 (2017).

10.1117/12.2269729
10 

H. Cao, J. Wu, J. Yu, and J. Ma, "High-efficiency polarization-independent wideband multilayer dielectric reflective bullet-alike cross-section fused-silica beam combining grating," Appl. Opt. 57, 900-904 (2018).

10.1364/AO.57.00090029400765
11 

X. Cheng, Z. Shen, H. Jiao, J. Zhang, B. Ma, T. Ding, J. Lu, X. Wang, and Z. Wang, "Laser damage study of nodules in electron-beam-evaporated HfO2/SiO2 high reflectors," Appl. Opt. 50, C357-C363 (2011).

10.1364/AO.50.00C35721460963
12 

L. Gallais, B. Mangote, M. Zerrad, M. Commandre, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, "Laser-induced damage of hafnia coatings as a function of pulse duration in the femtosecond to nanosecond range," Appl. Opt. 50, C178-C187 (2011).

10.1364/AO.50.00C17821460935
13 

J.-Y. Natoil, L. Gallais, H. Akhiuayri, and C. Amra, "Laser-induced damage of materials in bulk, thin-film, and liquid forms," Appl. Opt. 41, 3156-3166 (2002).

10.1364/AO.41.00315612064395
14 

M. Sugiura, K. Tamura, and M. Kobiyama, "Quantitative calculation of substrate bending caused by multilayer coating stresses," Appl. Opt. 59, A92-A98 (2020).

10.1364/AO.59.000A9232225360
15 

H.-J. Cho, Practical Optical Thin Films (Books-Hill, Seoul, Korea. 2015), pp. 278-280.

16 

J. E. Harvey and C. L. Vernold, "Description of diffraction grating behavior in direct cosine space," Appl. Opt. 37, 8158-8159 (1998).

10.1364/AO.37.008158
17 

J. E. Harvey and R. N. Pfisterer, "Understanding diffraction grating behavior: including conical diffraction and Rayleigh anomalies from transmission gratings," Opt. Eng. 58, 087105 (2019).

10.1117/1.OE.58.8.087105
18 

N. Bonod and J. Neauport, "Diffraction gratings: from principles to applications in high intensity lasers," Adv. Opt. Photonics 8, 156-199 (2016).

10.1364/AOP.8.000156
19 

H.-J. Cho, K.-H. Lee, S.-I. Kim, J.-H. Lee, H.-T. Kim, W.-S. Kim, D. H. Kim, Y.-S. Lee, S. Kim, T. Y. Kim, and C. K. Hwangbo, "Analysis on design and fabrication of high-diffraction-efficiency multilayer dielectric gratings," Curr. Opt. Photon. 2, 125-133 (2018).

20 

K. Johnson, Diffraction optics simulation and design from KJ Innovation (KJ Innovation) www.kjinnovation.com (Accessed date: 2020. 05. 22).

Information
  • Publisher :Optical Society of Korea
  • Publisher(Ko) :한국광학회
  • Journal Title :Korean Journal of Optics and Photonics
  • Journal Title(Ko) :한국광학회지
  • Volume : 31
  • No :4
  • Pages :169-175
  • Received Date :2020. 06. 08
  • Revised Date :2020. 06. 25
  • Accepted Date : 2020. 06. 28